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Graphs corresponding to reference polynomial 
or to circuit characteristic polynomial 

Noriyuki Mizoguchi 

Department of Physics, Meiji College of Pharmacy, 
Nozawa, Setagaya-ku, Tokyo 154, Japan 

A vertex-weighted graph G ° is studied which is obtained by deleting edge ers in 
a circuit of a graph G and giving two vertices t~ r and v s weights hr = 1 and h s = -1, 
respectively. It is shown that if subgraph G - u r is identical with subgraph G - us, then 
the reference polynomial of G ° is identical with that of G and the characteristic polynomial 
of G ° contains the contributions due to  only a certain part of the circuits found in the 
original graph G. This result gives a simple way to find a graph whose characteristic 
polynomial is equal to the reference polynomial in the topological resonance energy 
theory or to the circuit characteristic polynomial in the circuit resonance energy theory. 
This approach can be applied not only to Hilckel graphs but also to M6bius graphs, 
provided that they satisfy a certain condition. The significances of this new type of 
"reference" graph thus obtained are pointed out. 

1. Introduction 

Reexamination of HiJckel molecular orbital theory (HMO) in terms of graph 
theory [1] has confirmed the topological features of  HMO theory [2]. One important 
finding is that each coefficient of  the characteristic polynomial of  a graph (HMO 
secular polynomial) can be obtained by counting the number of  edges, circuits, and 
vertices of certain subgraphs (called Sachs graphs) [3]. This finding led to the 
definition of  a graph-theoretical resonance energy, called the topological resonance 
energy TRE [4], which is the difference between the total g-electron energy of  a 
conjugated system and that of a hypothetical acyclic reference structure. The polynomial 
for the hypothetical acyclic reference structure (the reference polynomial) is obtained 
by deleting all the cyclic component contributions to the coefficients of the characteristic 
polynomial. 

The definition of TRE implies that the stability (or instability) of  a conjugated 
molecule arises from cyclic conjugations of g-electrons and that the driving force 
for cyclic conjugations of  g-electrons is each circuit found in the graph representing 
the molecule considered. It was verified that the sign of the contribution of each 
circuit (or each pair of  disjoint circuits) in a graph is determined by the number of  
vertices in the circuit (or by the number of  vertices in the two disjoint circuits) [5]. 
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Since the TRE value of a polycyclic conjugated molecule is a complicated 
function of circuits and pairs of disjoint circuits, we cannot estimate from the TRE 
value itself the contribution of each circuit (circuit resonance energy) to the TRE 
of the system. In order to evaluate circuit resonance energy (CRE), Aihara introduced 
a new polynomial called the circuit characteristic polynomial [6]. This polynomial 
contains the contribution of only one circuit. It was proved that the sign of CRE 
for a circuit is determined by the number of vertices in the circuit [7]. The stability 
of  MObius annulenes shows a tendency opposite to that of Hfickel armulenes [8]. 
It was proved both in the TRE [9] and CRE theory [7] that this is true also for 
polycyclic molecules. 

The roots of the reference polynomial should be real numbers. A way to 
prove that this is true is to find a graph whose characteristic polynomial is identical 
with the reference polynomial under the condition that the adjacency matrix of the 
graph is Hermitean. Many authors in the chemistry literature have tried to find a 
graph whose characteristic polynomial is identical with the reference polynomial. 
They succeeded for monocylic graphs and nonfused polycyclic graphs, but did not 
succeed for fused polycyclic graphs except those with certain symmetries [10-13].  
However, in the field of statistical physics, Heilmann and Lieb have proved generally 
that the roots of  the reference polynomial are real numbers [14]. 

It is not evident what the "reference" structure represented by the reference 
polynomial is, because the definition of the reference polynomial is purely combinatorial 
in nature. This is another important problem associated with the reference polynomial. 
Finding the "reference" graph is necessary to clarify the structure represented by 
the reference polynomial. In previous papers, by using the knowledge of "reference" 
graphs, we showed that "reference" structure can be considered to be an intermediate 
state between Hfickel and MObius graphs [12, 13]. 

A similar difficulty is also found in the CRE theory. It is important in the 
CRE theory that the roots of  the circuit characteristic polynomial are real numbers. 
By obtaining the graph whose characteristic polynomial is identical with the 
circuit characteristic polynomial, it was proved that the circuit characteristic 
polynomial for any circuit in a polycyclic conjugated molecule has no imaginary 
roots if this molecule is a nonfused polycyclic conjugated molecule or a fused 
bicyclic system [13, 15]. Further, it was shown that the graph represented by the 
circuit characteristic polynomial is an intermediate system between Htickel and 
MObius polycyclic graphs [13]. However, a general proof of this problem has never 
been given [16]. 

There is no one-to-one correspondence between a graph and its characteristic 
polynomial* [ 18]. Therefore, there can be several different graphs whose characteristic 
polynomials are identical with the reference polynomial or with the circuit characteristic 
polynomial. So far, two different types of "reference" graphs have been obtained. 

*This problem has been extensively studied as isospectral molecular graphs. See, for example, ref. [17]. 
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The "reference" graph obtained by Hemdon and Parkanyi is an edge-weighted 
graph which is obtained by deletion of an edge from the cyclic part of the molecular 
graph and weighting of the adjacent edge by the parameter k = - ~ - o r  4-3 [10]. 
Another type of "reference" graph is a directed and edge-weighted graph which is 
obtained by replacing one edge in a circuit in an original graph with a pair of 
directed edges with the weight i or - i  02= -1)  [12, 13]. 

The purpose of this paper is to present an approach for obtaining a new type 
of "reference" graph which is a vertex-weighted graph. This approach also enables 
us to obtain a new type of graph whose characteristic polynomial is identical with 
the circuit characteristic polynomial. 

2. Vertex-weighted graph 

Before presenting our approach, let us define several subgraphs of a graph 
G and give two equations which show the relationship between the coefficients of 
the characteristic polynomials of the graph and these subgraphs. 

Subgraph G -  vr is obtained from a graph G by deleting vertex Vr and the 
edge(s) including this vertex. Deletion of edge ers from G gives subgraph G - e,s. 
Subgraph G - Cj is obtained from G by deleting all the vertices in the circuit Cj and 
all edges including these vertices. Figure 1 shows the subgraphs and three circuits 
for the naphthalene graph. 

CC 
S V s VS 

G O-v r G-ers 

C I G-C 1 G-C 2 C 2 C3 

Fig. 1. Subgraphs and circuits of the naphthalene graph. 

Let an(G) be the coefficents of the characteristic polynomial of a graph G: 

N(G) 
P(G; X) = ~ an(G)X N(G)-n, (1) 

n=0 
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where N(G)  is the number of vertices in G. Let a]C(G) be the acyclic part of an(G) 
arising from the contributions of acyclic Sachs graphs only, and let a~(G) be the 
cyclic part of an(G) arising from the contributions from cyclic Sachs graphs that 
contain at least one circuit. The coefficient of the reference polynomial of G is 
given by the acyclic part of an(G), namely, aac(G) [4]. 

If G is a graph in which every edge has the weight 1 and every vertex has 
no weight, then by using Sachs' theorem we can obtain the following recurrence 
relations: 

and 

ac "G anaC(G) = aaC(G - ers ) - an_2t - D r - vs)  

a~(G) = - 2  ~.. aac_N(C:)(G - Cj) 
J 

(2) 

+(-1)222 2 2 ac an_N(Ci)_N(Ck)(G Cj - C k) . . . .  
j ~(~j) 

(3) 

In eq. (3), N(Cj)  denotes the number of vertices in circuit Cj, and the first and 
second sums run over all the circuits and over all possible pairs of disjoint circuits 
found in G, respectively. 

Our new approach uses vertex-weighted graphs. The weighted vertex is denoted 
by a loop with weight h. Note that a loop is not a circuit. Sachs' theorem allows 
one to calculate the coefficents of the characteristic polynomial of a vertex-weighted 
graph Gvw as follows [19]: 

m 

a~(Gvw) = ~ (-1)n(s)2c(s) 1-I h~ "(s)" 
s~S. r=l 

(4) 

Here, S,, is the set of all Sachs graphs of  Gvw with n vertices; n(s) is the number 
of the components in Sachs graphs s; c(s) is the number of the circuits in Sachs 
graphs s; h~ is the weight of vertex v~; l~ is the number of loops with vertex weight 
hr in Sachs graphs s; m is the number of kinds of vertex weights hr. 

Let H be the graph of a (poly)cyclic conjugated molecule without bond 
alternation or heteroatom(s). Any vertex in H has no weight and any edge has the 
weight 1. Let ers be one edge contained in a circuit in H. Suppose that 

H - v  r = H - v  s . (5) 

Let H* be a vertex-weighted graph obtained by giving two vertices vr and 
vs in H -  ers weights hr = 1 and h, = - 1, respectively (see fig. 2). We can obtain 
the following propositions. 
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ers  

V S V s 

-1 
H H* 

Fig. 2. Graphs H and H*. 

PROPOSITION 1 

The reference polynomial of H* is identical with the reference polynomial of  
the original graph H, 

R(H*; X) = R(H; X). (6) 

This is the case also for subgraphs such as H*-Cj  and H * - C j - C k ,  

R(H*- Cj; X) = R(H-  Cj; X), (7) 

R(H*- Cj-  Ck; X) = R(H-  C i -  Ck; X). (8) 

Equations (5)-(8)  show that the pair of vertices vr and vs with weight 1 
and -1  acts like one edge in the calculations of the coefficients of the reference 
polynomials of graphs H* and of subgraphs such as H* - Cj and H* - Cj -  Ck. 

PROPOSITION 2 

The characteristic polynomial of H* is expressed in terms of the reference 
polynomials of graph H and its subgraphs such as H -  Cj as follows: 

P(H*;X)= R ( H ; X ) -  2 ~_~R(H-Ci;X)+ 2 2 ~.~ ~ R ( H - C j - C k ; X ) -  . . . , (9)  
j j k(~j) 

where the first and second sums run over all the circuits and over all possible pairs 
of disjoint circuits found in H*, respectively. 

Equation (9) shows that the characteristic polynomial of H* contains the 
contributions due to only a part of the circuits found in H, namely the contributions 
due to only the circuits which do not contain the edge ers in H. 

Proof of propositions 1 and 2 

We divide Sachs graphs Sn for graph H* into four groups, one which does 
not contain vertex vr or vs, one which contains vertex vr only, one which contains 
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vertex vs only, and one which contains both of  two vertices v~ and vs. Then by 
using eq. (4), the coefficient a n ( H * )  is divided into four terms corresponding to the 
four types of  Sachs graphs, 

a n ( H *  ) = a n ( H  - ers ) + (-1)hran_1(H - Vr)  

+ ( - 1 ) h s a n _  1 ( H  - v s ) + (-1) 2 hrhsan_ 2 ( H  - V r - U s) .  

Since h, = - h s  = 1 and H -  Vr = H -  Vs, the second and third terms of  the right- 
hand side of  the above equation cancel each other. Thus, we have 

a n ( H *  ) = a n ( H - e r s )  - a n _ 2 ( H -  v r - u s )  

or  

a aC(H *) = aaC(H - ers ) - a a c r  H n-2k - -  V r - vs), (10) 

aC~(H *) = aC,(H - ers ) - aen_z(H - v r - u s ) .  (11) 

Since graph H does not contain h~ or hs, we can apply eq. (2) to this graph 

aaC(H) = aaC(H - ers ) - aae__z(H - v r - u s ) .  

to have 

From eqs. (10) and (12), it follows that 

(12) 

a C ( H _ e r , ) = _ 2 ~  ac " H  -Cj) an_N(Ci ) t  -- ers 
J 

+(_1)222~ ~ ac H -C) Ck) a n - N ( C j ) - N ( C , ) (  -- ers -- . . . , 
j k(¢j) 

(14) 

a C ( H  - v r - Vs) = -2 ~ aaCN(cD(H - D r -- D s -- Cj) 

J 

ac r H _ . . .  . + ( - 1 ) 2 2 2 ~  ~ an_N(C~)_N(C~)~ - V  r - v  s - c j  C k )  (15) 
j k(~j) 

Equations (14) and (15) allow us to rewrite eq. (11) as follows: 

Equation (13) holds for an arbitrary positive integer n. Thus, we have proved eq. (6). 
The condition of  eq. (5) is satisfied also for subgraphs such as H -  Cj  or 

H - C j -  Ck .  Therefore, in a similar way, we can prove eqs. (7) and (8). 
We apply eq. (3) to H -  ers and H -  v r -  vs to have 

a, ~c (H*) = a~ c (H). (13) 
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= x--, ,,~ "H C j) a~(H*) --2 2_.,an_N(Ci)t -- 
J 

+(_1)222~ ~ ac " H - C j - C k )  + (16) an-N(Ci)-N(C k)~ . . . .  
j k(~j) 

where we have used the following equations which are derived from eq. (2): 

and 
a a e ( H - C i ) = a ] e ( H - e r s - C j )  - a ] C ( H - V r - V s - C j )  

aa,.C(H-Cj -Ck )  = aae(H-ers - C j  - C  k) - aaC(H-Vr - V  s - C j  -Ck) .  

Equation (16) holds for an arbitrary positive integer n. From eqs. (13) and (16) we 
can obtain eq. (9). 

So far, we have considered as graph H graphs in which each edge has the 
weight 1. MObius-type conjugated molecules are represented by a graph in which 
some edges have the weight -1  [9]. A circuit in which an odd number of edges 
have the weight -1  is called a MObius-type circuit, while a circuit in which an even 
number of edges have the weight - 1 is called a Hfickel-type circuit [9]. A MObius 
graph is a graph which has at least one MObius-type circuit [9]. 

The reference polynomial of any MObius graph obtained from a parent graph 
is identical with that of the parent graph [9]. Therefore, proposition 1 is valid also 
for M6bius graphs without any changes. However, proposition 2 should be rewritten 
as follows: 

PROPOSITION 3 

If graph H is a MObius graph, then the characteristic polynomial of H* is 
expressed as follows: 

P(H*; X) = R(H; X) - 2 ~ (-1) P(c~) R(H - Cj; X) 
J 

+2 2 "~ ~ (-1)P(c~)+P(Ck)R(H- Cj - C k ; X ) - . . . .  (17) 
j k(#j) 

Here, P(Cj) is zero for a H~ickel-type circuit and 1 for a MObius-type circuit, and 
the first and second sums run over all the circuits and over all possible pairs of  
disjoint circuits found in H*, respectively. 

To illustrate the above results, consider the graph G1 in fig. 3. Graph G1, 
which is a MObius graph for anthracene, contains six circuits C1-C6. Three circuits 
CI, C4 (= C1 + C2) and C 6 (=C 1 + C 2 4- C3) are of MObius type and the other three 
circuits C2, C3 and C5 ( = C2 + C3) are of Htickel type. Two graphs G2 and G3 in 
fig. 3 are taken to be graphs as H*. From proposition 2, it is seen that the reference 
polynomial of  the three graphs are identical: 
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G1 

1 1 

-1 -1 

G2 G3 

Fig. 3. M6bius anthracene graph G1 and 
two vertex-weighted graphs G2 and G3. 

R(G1; X) = R(G2; X) = R(G3; X). 

From proposition 3, it is seen that the characteristic polynomial of graph G2 contains 
the contributions of the circuits CI, C2, C4 only: 

P(G2; X) = R(G1; X) + 2R(G1 - C1; X) - 2R(G1 - C2, X) + 2R(G1 - C4; X) 

and that the characteristic polynomial of graph G3 contains the contributions of  the 
circuits C1, C5, and C6 only: 

P(G3; X) =R(G1; X) + 2R(G1 - C1; X) -2R(G1  - C5; X) + 2R(G1 - C6; X). 

. Graphs corresponding to r e f e r e n c e  p o l y n o m i a l  o r  to circuit characteristic 
p o l y n o m i a l  

The results obtained above give a simple way to find a graph whose characteristic 
polynomial is equal to the reference polynomial or to the circuit characteristic 
polynomial of a given graph. 

A graph whose characteristic polynomial is equal to the reference polynomial 
of  an original graph is called a "reference" graph for the original graph. Now it will 
be evident from proposition 1 that if H is a monocyclic graph, then H* satisfies the 
following equation: 

P(H*; X) = R(H; X), (18) 

which shows that graph H* is a "reference" graph for graph H. In this way, we can 
obtain a "reference" graph for any monocyclic graph as long as this graph satisfies 
eq. (5). Figure 4 shows three examples. Graphs on the right-hand side are "reference" 
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0 
-1 

1 
-] 

-1 ~ -1 

1 

-1 

Fig. 4. "Reference" graphs for monocyclic graphs. 
Graphs on the right-hand side are "reference" 
graphs for graphs on the left-hand side, respectively. 

graphs for the graphs on the left-hand side, respectively. For polycyclic graphs, we 
cannot obtain "reference" graphs with this method because any graph with one or 
more pairs of  vertices with weights 1 and -1  does not satisfy eq. (5). 

The circuit resonance energy for a circuit Cn in a polycyclic graph G is 
calculated from the roots of  the circuit characteristic polynomial given by 

P(G/Cn; X) = R(G; X) - 2R(G - C~; X). (19) 

This polynomial contains the contribution of the circuit Cn only [6,7]. 
If a graph G* satisfies 

P(G*; X) = P(G/Cn; X), (20) 

then G* is a graph which represents a structure corresponding to the circuit characteristic 
polynomial P(G/Cn; X). 

Let us take the graph G4 in fig. 5 as one example. This graph contains three 
circuits C1, C2, C3 (=C1 + C2). From proposition 1, it is seen that for the three 
graphs G S - G 7  in fig. 5 

P(G5; X) = R(G4; X) - 2R(G4 - C1; X), 
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6 

5 

7 1 
8 

2 0 
4 -1 

G4 G5 

1 1 

-1 -1 

G6 G7 

Fig. 5. Graph G4 and graphs G5, G6, and G7 corre- 
sponding to circuit characteristic polynomials for G4. 

P(G6; X) = R(G4; X) - 2R(G4 - C2; X), 

P(G7; X) = R(G4; X) - 2R(G4 - C3; X). 

Thus, the characteristic polynomials of  the three graphs are equal to P(G4/C1; X), 
P(G4/C2; X), and P(G4/C3; X), respectively. This means that graphs G5, G6, and 
G7 represent structures corresponding to P(G4/C1; X), P(G4/C2; X), and P(G4/C3; X), 
respectively. In this way, we can obtain a graph which represents a structure 
corresponding to the circuit characteristic polynomial of  any bicyclic graph as long 
as the bicyclic graph satisfies eq. (5). 

Unfortunately, we cannot apply this method to polycyclic graphs with three 
or more rings to obtain graphs which satisfy eq. (20) because any graph in which 
two or more pairs of  vertices with weights 1 and - 1 exist does not satisfy eq. (5). 

The present approach can also be applied to MObius graphs. If circuit Cn is 
of  M0bius-type, then eq. (20) should be rewritten as follows [7]: 

P(G/Cn; X) = R(G; X) + 2R(G - Cn; X). (21) 

One example is shown in fig. 6. Graph G8 is a MObius graph for graph G4. From 
eq. (9), it is seen that the characteristic polynomial of  graph G9 has only a contribution 
of the M6bius-type circuit C1: 

P(G9; X) = R(G8; X) + 2 R ( G 8 -  C1; X). 
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-1 Cl• - 1 0  

G8 G9 

1 

9 

0 
-1 

Fig. 6. M6bius graph G8 and graph G9 correspond- 
ing to the circuit characteristic polynomial for G8. 

This equation shows that graph G9 represents a structure corresponding to the 
circuit characteristic polynomial for MObius circuit C1 in G8. 

4. Concluding remarks 

A vertex-weighted graph G* which is obtained by deleting edge ers in a 
circuit of a graph G and by giving two vertices v, and vs weights h, = 1 and 
h, = - 1, respectively, was studied. It was shown that under a certain condition, the 
reference polynomial of G* is identical with that of G and the characteristic polynomial 
of G* contains the contributions due to only the circuits which do not contain the 
edge e,, in G. 

From this result, we obtained a simple way to find a graph whose characteristic 
polynomial is equal to the reference polynomial in the TRE theory or to the circuit 
characteristic polynomial in the CRE theory. This approach can be applied not only 
to H~ickel graphs but also to MObius graphs, provided that they satisfy a certain 
condition. 

There can be several different graphs whose characteristic polynomials are 
identical with the reference polynomial for a graph. Since in the present paper we 
have obtained a new type of "reference" graph, we now have three different types 
of "reference" graph. The "reference" graph obtained in the present paper is a 
vertex-weighted graph (type I). Hemdon and Parkanyi's "reference" graph is an 
edge-weighted graph (type II) [10]. The "reference" graphs of type I and II have 
one edge less than the original graph. However, it is not always necessary that a 
reference structure has one edge less than the corresponding real molecular graph. 
In previous papers, we obtained another type of "reference" graph which is a 
directed and edge-weighted graph (type III). It should be noted that none of them 
is a simple open chain analogue of the original graph, but an edge-weighted or 
vertex-weighted graph with unusual weight(s). 

The study of the relationship between the three systems, Htickel, MObius, and 
"reference", helps us in understanding aromaticity, because the stability of MObius 
systems shows a tendency opposite to that of H(ickel systems. In previous papers 
[12,13], we pointed out that the "reference" graph of type III can be considered to 
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be an intermediate state between Htickel and MObius graphs and that graphs representing 
the circuit characteristic polynomial are intermediate systems between corresponding 
Htickel and MObius polycyclic graphs. Another close relationship is also found 
between the "reference" graphs of types I and III and a MObius graph. Group theory 
allows one to decompose the spectrum of a (H~ickel) graph with certain symmetry 
into the spectra of smaller graphs [20]. This holds also for MObius graphs. Knowledge 
of the "reference" graph is necessary in the study of the decomposition of the 
spectrum of the MObius graph in order to identify the smaller graphs obtained in 
the decomposition. From the knowledge of the "reference" graph, for example, we 
can identify the graphs obtained in the decomposition of the spectrum of  MObius 
[2n]annulene graphs with plane symmetry (or with the rotation symmetry about a 
C2 axis), which are the "reference" graphs of type I (or III) for an [n]annulene 
graph. A similar result holds also for the graphs corresponding to the circuit characteristic 
polynomial. Details will be given elsewhere. 

The circuit resonance energy defined by Aihara [6] is given by the difference 
between the HMO total energy calculated from the circuit characteristic polynomial 
and that calculated from the reference polynomial. Another type of circuit resonance 
energy can be defined as the difference between the HMO total energy calculated 
from the characteristic polynomial and that calculated from the polynomial which 
does not have only the contribution of a circuit. Gutman and Bosanac used this 
approach and considered a polynomial given by 

P(G/Cn; X) = P(G; X) + 2R(G - C~; X) (22) 

to be a polynomial which does not have the contribution of a circuit Cn to the 
characteristic polynomial of a graph G [21]. However, it was pointed out by Herndon 
that the roots of the polynomial P(G/Cn; X) for some molecules are imaginary numbers 
[22]. As shown in section 2 and in previous papers [12,13], we cannot delete only 
the contribution of  one circuit from the characteristic polynomial of a graph G. In 
other words, deletion of the contribution of a ring (fundamental circuit) accompanies 
the deletion of other circuit(s) which contain the ring. Therefore, it is more reasonable 
to use, instead of eq. (22), a polynomial which does not have the contribution of a 
ring (and also circuit(s) which contains the ring) to the characteristic polynomial of 
a graph G. This polynomial is given, for instance, by the characteristic polynomial 
of the graph H* discussed above. Then it is ensured that all the roots of this polynomial 
are real numbers because the adjacency matrix of graph H* is Hermitean. Application 
of this new type of  circuit resonance energy will be studied elsewhere. 
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